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Abstract. Abstract algebraic logic (AAL) is a branch of logic that
uses universal algebra to study the properties of logical systems by as-
sociating them with representative classes of algebras, thus generalizing
the Lindenbaum-Tarski process that leads to linking Boolean algebras
with classical propositional logic. The theory of AAL then classifies
logical systems and their metaproperties, systematically, along bridge
theorems that relate them with properties of the associated algebras.

Recently, concepts of behavioral algebraic specification have influenced
the development of the behavioral approach to AAL. Namely, the no-
tion of behavioral equivalence, imported from computer science, has
been used to weaken the traditional equational reasoning underlying
AAL, thus accommodating, in a unified theory, a wider range of log-
ical systems. In the opposite direction, the theory of AAL has found
meaningful applications in computer science, namely in the study of
specification refinement, a central process in modular software devel-
opment.

Herein, we wish to support the idea that this mutual feedback should
deserve to be given closer attention in undergraduate curricula in logic
and computer science, thus providing a common solid algebraic back-
ground to students wishing to pursue their studies in either area.

1 Introduction

In this paper, we discuss the recent development of the behavioral approach
to AAL that adds more relevance to its interdisciplinary nature and provides
strong supporting arguments to its inclusion in undergraduate curricula in logic
and computer science. Typically, students begin studying logic by having con-
tact with particular logical systems such as classical propositional logic (CPL)
and first-order logic (FOL), but sometimes also intuitionistic propositional logic
(IPL) or even modal logic. However, deeper studies require a more abstract and
systematic approach, which may well be provided by the AAL setting.

Often, logical systems are presented by axioms and inference rules, but
this definition is restricted to logics which are finitary. A logic (or a deductive
system), in Tarski´s point of view, consists of a pair L = ⟨Σ,⊢⟩, where Σ is a
signature (defining the similarity type of the operations with which formulas
are built) and ⊢ is a relation between sets of formulas and individual formulas,
called the consequence relation of L, which satisfies reflexivity, cut, weakening
and structurality conditions (cf. [20]), but which may not be finitary.



On the other hand, it is enlightening to associate a class of algebras to a
logic. For instance, to CPL we can associate the class of Boolean algebras (BA)
as follows: the set of formulas FmL is partitioned into logical equivalence classes
and then abstracted by the familiar algebraic process of forming quotients.
This is called the Lindenbaum-Tarski algebra. More precisely, given a theory T ,
the Lindenbaum-Tarski algebra induced by T for CPL is the quotient algebra
FmL/ ≡T , where ≡T is the congruence on the formula algebra defined by
φ ≡T ψ iff φ and ψ are logically equivalent in T , that is, φ ↔ ψ ∈ T . This
quotient algebra is a BA. Conversely, every countable BA is isomorphic to an
algebra FmL/ ≡T for some theory T of CPL. This is called the Lindenbaum-
Tarski process. A similar phenomenon occurs with IPL and the class of Heyting
algebras (HA).

In both cases above, there is a biconditional ↔ that defines the logical
equivalence. Still, many logics o not have a proper biconditional, and hence the
Lindenbaum-Tarski process cannot be applied directly. In order to generalize
this process to other logics, the role played by the congruence ≡T is replaced by
the Leibniz congruence and the equivalence connective by a system of equiv-
alence formulas [3]. A system of equivalence formulas is a set of formulas in
two variables that satisfies reflexivity, symmetry, transitivity, modus ponens
and simple replacement conditions. The Leibniz congruence Ω(T ) on the term
algebra over a L-theory T is defined as the relation that identifies two formulas
α, β if for every formula φ and any variable p occurring in φ, φ(p/α) ∈ T iff
φ(p/β) ∈ T . The Leibniz congruence is extended in a natural way to the power
set of an arbitrary algebra. Given an algebra A, of the same similarity type
as L, and a designated subset F of A, the pair ⟨A, F ⟩ is called a matrix. The
relation Ω(F ) identifies any two elements which cannot be distinguished by any
property expressed by a formula; formally, for any pair of elements a, b ∈ A;
a ≡ b (Ω(F )) if for each formula φ(x, y), where y is a vector of k variables,
and all parameters c ∈ Ak; φA(a, c) ∈ F iff φA(b, c) ∈ F . Moreover, Ω(F ) is a
congruence on A. When it is the identity relation, the matrix ⟨A, F ⟩ is called
reduced. The terminology is justified by the fact that Ω(F ) may be seen as the
sentential version of the second order definition of equality given by Leibniz,
who considered two objects equal if they share the same properties expressed
in the language of discourse.

We can gather logics in classes by means of properties of the Leibniz op-
erator, the so-called Leibniz Hierarchy. The class of algebraizable logics ([3])
is a very important class in this hierarchy. A logic L = ⟨Σ,⊢⟩ is said to be
algebraizable iff there exists a class K of algebras such that the equational con-
sequence relation |=K is equivalent to ⊢. This link between logic and universal
algebra is very powerful because it relates two areas of mathematics. Moreover,
for algebraizable logic L, we can relate logical properties of L with algebraic
properties of its algebraic counterpart. This kind of results has been called
bridge theorems. There are many examples of such theorems; for instance: an
algebraizable logic has Craig´s interpolation property iff the class of its reducts
of its reduced matrix models has the amalgamation property [1, 11].

The development of the behavioral approach to AAL [9] was inspired by
techniques from behavioral specification in computer science. Namely, the weaker



notion of algebraization is based on behavioral equivalence, and allows for ex-
tending the applicability of theory to logics which are not algebraizable accord-
ing to the standard approach, while also bringing a new algebraic perspective
to logics which are algebraizable using the standard tools of AAL. On the other
hand, a generalization of the notion of sentential logic, hidden k-logic, has been
used to support verification and specification of requirements in the object ori-
ented paradigm. Naturally, its theory has been developed based on tools and
results from AAL. Namely, the Leibniz hierarchy is generalized for hidden k-
logics using a behavioral version of the Leibniz congruence [9, 15]. This feedback
between AAL and computer science is worthy of further research, and we are
confident that this correlation will exert, in the near future, positive develop-
ments in both sides. Furthermore, as of now, we view as highly positive the
possibility of exploring this interdisciplinarity as a vehicle for teaching logic
and its connections with computer science in a solid algebraic environment.

Outline. The paper is organized in two parts. In the first part, Section 2,
we present the behavioral generalization of the notion of algebraizable logic.
Namely, we show how some well known arguments/ideas from computer science
are used in the development of the behavioral approach to AAL, and present a
simple example. At the end of this section, we describe the class of behaviorally
finitely equivalential logics and we exhibit an element in the class. In the second
part, Section 3, we explain how AAL theory can be applied to computer science
in the context of software verification and development. It is well known that
the traditional notions of refinement based on signature morphisms are often
too rigid to capture a number of relevant transformations, hence other maps
should be considered. We explain how interpretations can be used for this
purpose.

2 From computer science to AAL

The motivation for the behavorial approach to AAL emerges from computer
science, namely from the algebraic approach to the specification and verification
of software, where abstract data types and object classes are defined by the
properties of their associated operations. In that setting, data can naturally
be split into two categories: visible data which can be directly accessed, and
hidden data that can only be accessed indirectly by analyzing the meaning
of programs with visible output, called experiments. The role of experiments
is to access the relevant information encapsulated in a state. Since we cannot
access the hidden data directly, it is not possible to reason about the equality of
two hidden values. Hence, equational logic needs to be replaced by behavioral
equational logic based on the notion of behavioral equivalence. Two values
are said to behaviorally equivalent if they cannot be distinguished by the set
of available experiments. Since we may not have all experiments available to
distinguish two values, we introduce the notion of Γ-behavioral equivalence,
where Γ is a subset of the set of original operations. Two values are said to
be Γ-behaviorally equivalent if they cannot be distinguished by all experiments



that can be build with the operations in Γ. The Γ-behavioral equivalence is the
largest Γ-congruence whose visible part is the identity relation. Thus there is a
natural connection with the notion of Leibniz congruence. The standard notion
of algebraization corresponds to the particular case when Γ = Σ.

The behavioral generalization of the standard AAL theory is motivated by
the fact that simple logics are often not expressive enough when we want to
reason about complex systems. In particular, we often need logics over richer
languages whose elements can be distinguished by sorts. For instance, FOL can
be naturally seen as a logic with two sorts (terms and formulas). In the resulting
behavioral setting, many logics that lack a meaningful algebraic counterpart in
the traditional sense become behaviorally algebraizable [13, 9, 6]. The approach
is supported on replacing the role of unsorted equational logic by many-sorted
behavioral equational logic over the same signature and taking as unique visible
sort, the sort ϕ of formulas. Since the sort ϕ is considered visible, we have
equational reasoning about formulas, but we do not require every connective
to be congruent. Paradigmatic examples are the paraconsistent logic C1 of
da Costa and the Carnap-style presentation of modal logic S5 which are not
algebraizable in the standard sense but they are behaviorally algebraizable [13,
9, 7]. In a very informal way, a logic L is algebraizable if there exists a strong
representation between L and the equational consequence associated with a
class K of algebras.

A simple example ([8]). Let us consider the logic K/2 from [2], built over
a signature with negation ¬ and implication ⇒. Its consequence relation ⊢K/2

can be simply defined to be the semantic entailment associated to the set of all
bivaluations v : Fm → {0, 1}, with 1 designated, such that:

– v(¬φ) = 0 if v(φ) = 1, and
– v(φ⇒ ψ) = 0 iff v(φ) = 1 and v(ψ) = 0.

Clearly, the logic would be classical if the first clause would be written with ‘iff’.
As it is, it has a classical implication but a paracomplete negation. Interestingly,
the derived unary operation∼, with∼ φ defined as an abbreviation of φ⇒(¬φ),
still behaves as a classical negation: v(∼ φ) = 0 iff v(φ) = 1.

K/2 is structural, finitary and very easily axiomatizable by: Still, K/2 is

(A1) ⊢K/2 A⇒ (B ⇒A)
(A2) ⊢K/2 (A⇒ (B ⇒ C))⇒ ((A⇒B)⇒ (A⇒ C))
(A3) ⊢K/2 ((A⇒B)⇒A)⇒A
(A4) ⊢K/2 A⇒ ((¬A)⇒B)
(MP) A,A⇒B ⊢K/2 B

not algebraizable in the traditional sense. However, the logic is Γ -behaviorally
algebraizable with Γ consisting of ⇒ and ∼, equivalence set {φ⇒ ψ,ψ⇒ φ}
and truth-defining set {φ ≈ (φ⇒ φ)}.

The class of behaviorally finitely equivalential logics. The development
of the behavioral approach to AAL opens plenty new lines of research. For



instance, we can study the behavioral version of the Leibniz hierarchy [9]. An
interesting class of logics in the hierarchy is the class of behaviorally finitely
equivalential logic. A logic L is Γ-behaviorally finitely equivalential if there exists
a finite set ∆ of formulas in two variables that satisfies reflexivity, symmetry,
transitivity, modus ponens and simple replacement, but only for operations in
Γ. The set ∆ is called a Γ-behavioral finite equivalence set for L. We can also
characterize the class of behaviorally finitely equivalential logics by properties
of the behavioral Leibniz operator which maps each theory T of L to the largest
Γ-congruence over the algebra of formulas compatible with T . Indeed, assume
that a many-sorted logic L is Γ-standard (for every sort there exists a formula
without variables). Then, we have that, L is Γ-behaviorally finitely equivalential
iff the behavioral Leibniz operator is monotone and continuous.

This new class is distinct from others already studied. Actually, there is an
example of a logic which is only equivalential in the standard sense but finitely
equivalential in the behavioral approach: normal modal logicK [14]. Namely, it
is equivalential with the set of equivalence formulas {2n(φ↔ ψ) : n ∈ N} but
not finitely equivalential in the standard sense. As usual 2nα is an abbreviation
for the formula 22 · · ·2α, in which the modal operator 2 appears n times.
However, normal modal logic K is Γ -behaviorally finitely equivalential, if we
exclude the modal operator from Γ , with the finite set of behavioral equivalence
formulas {φ→ ψ,ψ → φ}.

3 From AAL to computer science

The industrial need for high-assurance of critical systems requires mathemat-
ically based development methods, able to model complex systems at ever-
increasing levels of reliability and security. As a consequence, the interest of
mathematicians in computer science problems has been steadily growing. An
example is the development of logical systems to support verification and spec-
ification of requirements. Hidden k-logics have been used, as the underlying
logic, in the verification and specification theory of object oriented systems [18].
Hidden k-logics are a natural generalization of logics in Tarski’s sense, so its
theory has been developed within AAL. More recently, the notion of refinement
has been examined using more flexible logical interpretations, as the traditional
notion of refinement based on signature morphisms is often too rigid. The pro-
cess of stepwise refinement, through which a complex design is produced by
incrementally adding details and reducing non determinism with respect to
its original, high-level specification, is done step-by-step until the specification
becomes a precise description of a concrete model; technically, an algebra.

A specification SP = ⟨Σ, JSP K⟩ is formed by a signature Σ, denoted by
Sig(SP ) and a class of Σ-algebras JSP K. The setpwise refinement process is the
systematic procedure by which, from an initial abstract specification SP0 more
concrete specifications are built by introducing new requirements leading to a
chain of specifications

SP0  SP1  SP2  · · · SPn−1  SPn



where for all 1 6 i 6 n, SPi−1  SPi means JSPiK ⊆ JSPi−1K. Composition
assures that SP0  SPn. The classical tool to relate specifications over distinct
signatures is the signature morphism. A signature morphism connecting Σ =
(S,Ω) to Σ′ = (S′,Ω′) is a pair of maps σ = (σsorts, σop), where σsorts : S → S′

and σop : Ω → Ω′ is a (S∗ × S)-indexed family of functions respecting the
sorts of operations. Given a signature morphism σ : Σ → Σ′, we say that the
specification SP ′ over Σ′ is a σ-refinement of SP , in symbols SP  σ SP ′,
if JSP ′K�σ ⊆ JSP ′K, where JSP ′K�σ = {A�σ | A ∈ JSP ′K}. We should point
out that a signature morphism maps a term into just another term and must
be compatible with the operations, a notion too rigid to be useful in general.
In order to capture more features of the development of software systems, we
can search for transformations supported by mappings which need not to be
morphisms; e.g. multi-functions. Unfortunately, in general it is not any longer
possible to define the reduct of an algebra by these maps, and consequently the
traditional algebraic treatment of program development can not be adopted.

A possibility is to use interpretations. An interpretation is a multi-function
that translates a formula into a set of formulas by preserving meaning. Actually,
originally defined as a tool for studying equivalent algebraic semantics (c.f.
[3, 5]), the notion of interpretation proves effective to capture a number of
transformations difficult to deal with in classical terms. To illustrate, let us
consider the following two specifications:

spec SPEC1 =
sorts s
ops f : s→ s
axioms
t ≈ t

inference rules
t ≈ t′, t′ ≈ t′′

t ≈ t′′

t ≈ t′

t′ ≈ t
t ≈ t′

f(t) ≈ f(t′)

spec SPEC2 =
sorts s
ops ok :→ s

f : s→ s
test : s× s→ s

axioms
test(t, t) ≈ ok

inference rules
test(t, t′) ≈ ok, test(t′, t′′) ≈ ok

test(t, t′′) ≈ ok

test(t, t′) ≈ ok

test(t′, t) ≈ ok

test(t, t′) ≈ ok

test(f(t), f(t′)) ≈ ok

Since the axiomatization of SPEC2 is defined by the translation of the
inference rules and axioms of SPEC1, we have ⊢SPEC1 t ≈ t′ iff ⊢SPEC2

test(t, t′) ≈ ok. This shows that SPEC2 interprets SPEC1 by the schematic
multifunction f(x ≈ y) = {test(x, y) ≈ ok}. On the other hand, an inspec-
tion of the signatures of both specifications shows that there exists an unique
signature morphism definable between them, the inclusion ι : Sig(SPEC1) →
Sig(SPEC2), which obviously does not witness a refinement step between them.

We are now ready to formulate this new tool for formal development of
programs. A translation from a signature Σ = (S,Ω) to a signature Σ′ = (S′,Ω′)
with respect to (w.r.t.) the set of variables X and X ′ (for Σ and Σ′ resp.) is



a S − S′-sorted multi-function τ : Eq(Σ, X)

/

Eq(Σ′, X ′) such that the image
of each equation is a finite set. Let τ : Eq(Σ, X)

/

Eq(Σ′, X ′) be a translation
and SP be a specification over Σ. We say that τ interprets SP if there is a
specification SP ′ over Σ′ such that, for any Σ-conditional equation ξ over X,
SP |= ξ iff SP ′ |= τ(ξ). We say that a specification SP ′ over Σ′ refines the
specification SP via the interpretation τ , in symbols SP ⇁τ SP

′, if τ interprets
SP and for any Σ-conditional equation ξ over X, SP |= ξ ⇒ SP ′ |= τ(ξ)
(c.f., [17]). A paradigmatic example is the class HA, that can be regarded as
a refinement of the specification of BA. Let X be a set of variables and Σ
the usual signature for BA and for HA. Consider the double negation map:
ι : TΣ(X) → TΣ(X) such that ι(t) = ¬¬t.

Let τ be the self translation of Σ defined by τ(t ≈ t′) = {ι(t) ≈ ι(t′)}. It
can be shown that τ interprets the specification of BA in the specification of
HA [5].

The notions of σ-refinement and refinement by interpretation are strongly
related. Indeed, let SP be a specification over Σ and τ a translation from
Σ to Σ′ w.r.t. the set of variables X and X ′ which interprets SP . Then, for
every SP ′ specification over Σ′, if SP τ  SP ′ then SP ⇁τ SP

′, where SP τ

is the specification over Σ′ whose models are the τ -model class of SP , i.e.,
the Σ′-algebras A′ such that SP |= ξ implies A′ |= τ(ξ) for any Σ-conditional
equation ξ overX. Actually, the refinement by interpretation is a generalization
of σ-refinement when the signature morphism σ is injective. The notion of
refinement by interpretations is generalized, in a natural way, to k-logics, that is
k-dimensional logics (cf. [17]). Equational logic is the most interesting example
of k-logics by considering an equation t ≈ t′ as a pair ⟨t, t′⟩. This generalization
allows the possibility to move from one dimension to another one. For instance,
any subclass of the class of BA induces a refinement by interpretation of CPL
with τ the usual translation defined by τ(φ) = {⟨φ,⊤⟩} (see [17]).

The AAL tools has also been applied to automata theory by considering
bisimulation as a special case of the Leibniz congruence ([4], [16] and [12]). We
are confident that such approach can be generalized to general Kripke models.

4 Conclusion

We briefly presented AAL as a theory that studies the mechanism by which a
class of algebras can be associated with a logic, and provides a general context
in which bridge theorems relating metalogical properties of a logic to algebraic
properties of its algebraic counterpart can be formulated precisely. We also
discussed how ideas from behavioral algebraic specification have influenced the
development of the behavioral approach to AAL. In this respect, we introduced
the new class of behaviorally finitely equivalential logics which captures some
phenomena occurring within modal logics. We also pointed out that AAL can
be applied to concrete problems in computer science, namely in algebraic pro-
gram development. To conclude, we want to emphasize that, beyond its genesis,
these new links with computer science increase its interdisciplinary nature and
reassert the pertinence of considering AAL as a vehicle for studying logic.
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