
Yoda: a simple tool for natural deduction

Benjamı́n Mach́ın and Luis Sierra

Instituto de Computación, Fac. de Ingenieŕıa, Universidad de la República, Uruguay
{bmachin,sierra}@fing.edu.uy

Abstract. The course of logic offered by our Engineering School intro-
duces the notion of formal proof following the Gentzen tree representa-
tion method. In this paper we present Yoda, a JavaScript application
that ensures the correct construction and display of these proofs in web
browsers.

1 Introduction

Logic is a core course for the Computer Engineering career in Universidad
de la República, Uruguay, whose syllabus covers the topics required for the
DS/BasicLogic outlined in [oCC01,For08]. The notion of formal proof is intro-
duced following the Gentzen tree representation method ([vD94]). Since 2009 we
offer an experimental course of Logic; while the standard course has five hundred
students, the experimental one counts with forty students and is considered a
place where innovations can be tested in a controlled way.

We are interested in some computer-based software that allow students to
check autonomically their assignments. After an exploratory use of different tools
and approaches we used ProofWeb ([HKvRW10]) in the experimental course of
2009. Taking into account this experience, we implemented and used our own
tool Yoda in both courses in 2010.

In the rest of the paper we present Yoda1. We start describing in Section 2
those features that we look for in a tool. Next, in Section 3 we present Yoda
by means of a running example. In Section 4 we comment briefly about our
experience with this tool. Finally, we give an outlook on future work.

2 The context

For many years we have been interested in introducing tools to improve teaching.
We believe there are different ways in how to measure this improvement; in our
case, a greater involvement with the course and an (expected) decrease in the
drop-out rate2 would be highly satisfactory.

In this section we present some simple criteria to classify tools, as well as
the requirements we consider important for a tool to fulfil in our educational
context.
1 www.fing.edu.uy/inco/cursos/lyc/soft/Yoda/indexProp.html

www.fing.edu.uy/inco/cursos/lyc/soft/Yoda/indexPred.html
2 Last year 38 percent of students drop out of this course.



2.1 Classification criteria

During the last thirty years many tools have been implemented and used in the
teaching of logic at university. In the following lines we propose some criteria to
classify them ([Sie08]).

The first criterion refers to the relationship between the course and the tools
used. Sometimes both are closely related (Tarski’s World [BPBE99], Winke3

[DE00]), or there is a set of tools that cover a wide spectrum of needs (Logic
Daemon4 [AH00]). In other cases, the tool focuses in a small problem that may
be considered in its own (Jape 5).

Tools and students interact in two different ways. In general, the student indi-
cates each action of the tool, advancing step by step in solving the problem. This
approach is followed by ETPS, ProofWeb and Papuq ([ABP+04,HKvRW10,SC07]).
On the other hand, some tools provide automatic mechanisms to complete the
task.

A last criterion distinguishes the complexity of the interface implemented. In
our case, the interface is the one given by a browser. This decision allows us to
work minimally in this problem, but counting with the usual features of zooming
and scrolling.

2.2 Requirements for the tool

We believe that a tool used in our course requires certain conditions in order
to be successful. The first condition is that the tool should be very simple to
execute. Our course has a teacher for every hundred students, and we cannot
manage the problems that arise when training users.

Another condition is that the tool should be broadly accessible. This condi-
tion rules out those tools that are tied to a particular operating system, even
when emulators or virtual machines may enable its portability.

The third constraint is that the tool should use Gentzen trees. We are not
interested in building a course around a tool, but in using a simple tool inside
an ongoing course that uses this representation. Francis J.Pelletier observes that
Gentzen trees’ method is not used much in elementary logic books ([Pel00]).
This observation also holds when looking for software.

Yoda is a simple software focused in natural deduction without automatic
features that satisfies our needs.

3 The tool

Yoda is a set of web based proof assistants developed as single-page applica-
tions, implemented in Javascript, CSS and jQuery6, making simplicity one of
3 http://staff.science.uva.nl/~ulle/WinKE/
4 http://logic.tamu.edu/
5 http://users.comlab.ox.ac.uk/bernard.sufrin/jape.html
6 The library jQuery is used only to retrieve the browser dependent length of some

texts.



its most remarkable features. There are no system requirements other than a
standard-compliant web browser, and no user training needed as well, given the
straightforward usability of the tool. We have implemented two assistants, one
for building proofs in propositional logic, and the other for first order predicate
logic.

To build a proof of Γ ` ϕ with Yoda, one should specify the conclusion ϕ and
the premises set Γ via an intuitive ascii syntax7. Once the goal and premises
are set, the building of the proof begins following a goal-driven strategy; the
assistant shows the partial proof tree with the current conclusion as its root,
and a drop-down list which displays the rules, premises and current hypotheses
that one may apply to prove it. On choosing one of these, the assistant checks
whether the action is applicable, in which case builds the corresponding subtree
(prompting for additional input if necessary) or shows an informative message
allowing the student to make a different choice.

We illustrate how the tool works with an example proof of {∀x(P0(x) →
P1(x)),∃xP0(f(x))} ` ∃xP1(x). First we must specify the similarity type of our
language, and then we can input the premises and goal (Fig. 1).

Fig. 1. Setting up the similarity type, premises and goal.

After checking the syntax of the formulas, Yoda displays the partial proof
tree with ∃xP1(x) as its root (Fig. 2).

We choose the ∃ elimination by clicking in the action list (Fig. 3), and input
∃xP0(x) when prompted.

Now we have two subgoals (Fig. 4), the leftmost is one of our premises and
proving it requires the explicit selection of the assumption rule from the action
list (Fig. 5). The other requires an ∃ introduction with F0(x) as witness, →
elimination of P0(F0(x)) → P1(F0(x)), hypothesis cancellation of P0(F0(x)) and

7 If using the first order predicate logic assistant, the similarity type of the used
language must be specified as well.



Fig. 2. Beginning the proof.

Fig. 3. Selecting the ∃ elimination rule.

∀ elimination of the remaining premise. Notice how used premises are marked
in a different way than cancelled hypothesis in the proof tree. The complete
derivation is shown on Fig. 6.

Fig. 4. New subgoals.

For larger proofs, (un)hiding of any subtree can be done by double clicking
on its rule name so as to get a better view of the rest of the proof. To undo a
proof or a part of it, one should double click on its conclusion.

4 Yoda in practice

A proper evaluation about the use of Yoda would require interviews and system-
atic monitoring of students attending the course. Unfortunately, at the moment
we can only provide anecdotal information.



Fig. 5. Explicit cancellation rule.

Fig. 6. Proof complete.

We implemented a first version of Yoda based on comments of the students
about the use of ProofWeb in 2009. Taking into account these comments, we
abandoned the support of a logical framework for the benefits of a simpler inter-
face and a faster response when using it. This version was enriched by students’
proposals such as the use of libraries, a help webpage, and the design of the
dialog boxes, thus becoming the definitive version for the courses of 2010. These
students collaborated with the course of Logic in 2010 introducing Yoda and
explaining some basic exercises to the new cohort.

5 Conclusions and future work

We have developed Yoda, a script that checks the correct construction of a
proof. The main contribution of our tool is showing the potential of browsers
to display logical proofs. This tool has been well accepted by our students; they
have proposed improvements and explained and promoted its use.

The future development of the tool include the development of the following
two libraries:

Library for ad-hoc compatibilities. Some browsers do not implement stan-
dard JavaScript entirely, turning important the development of a minimal



library for full portability. In Fig. 7 we can see our running example in a
mobile phone; nevertheless, this proof has not been built in the mobile be-
cause of problems with the drop-down list. This sort of issues are a target of
future improvements.

Library of metarules. Every natural deduction rule generates a set of JavaScript
functions. We are interested in a language to express different rules and
automatically generate this set of functions. Thus, Yoda will be able to
implement different deductive systems.

Moreover, we are interested in an improvement of the interface, as well as in the
management of lemmas and incomplete proofs.

Fig. 7. Visualization of Yoda in a mobile phone.

Finally, we agree with David Bostock ([Bos97]) when he states that the overall
structure of a Gentzen tree proof is easily seen; in particular, for every point in
the proof tree we know exactly what assumptions are used. Nevertheless, we
did not have a simple and portable tool to deal with this representation. Our
approach shows a simple way to obtain this tree representation leaving the main
problems of visualization to the browser.

References

[ABP+04] Peter B. Andrews, Chad E. Brown, Frank Pfenning, Matthew Bishop,
Sunil Issar, and Hongwei Xi. Etps: A system to help students write formal
proofs. Journal of Automated Reasoning, 32:75–92, 2004.

[AH00] Colin Allen and Michael Hand. Logic Primer. MIT Press, 2000.



[Bos97] David Bostock. Intermediate Logic. Oxford University Press, 1997.
[BPBE99] Dave Barker-Plummer, Jon Barwise, and John Etchemendy. Tarski’s

World. CSLI Publications, 1999.
[DE00] Marcello D’Agostino and Ulrich Endriss. Winke: A proof assistant for

teaching logic, June 2000.
[For08] ACM-IEEE Interim Review Task Force. Computer Science Curriculum

2008: an interim revision of CS 2001. 2008.
[HKvRW10] Maxim Hendriks, Cezary Kaliszyk, Femke van Raamsdonk, and Freek

Wiedijk. Teaching logic using a state-of-the-art proof assistant. Acta
Didactica Napocensia, 3(2):35–48, June 2010.

[oCC01] ACM-IEEE Joint Task Force on Computing Curricula. Computing Cur-
ricula 2001 - Computer Science - Final Report. 2001.

[Pel00] Francis Jeffry Pelletier. Logical Consequence: Rival Approaches, volume 1,
chapter A History of Natural Deduction and Elementary Logic Textbooks.
Hermes Science Pubs, 2000.

[SC07] Jakub Sakowicz and Jacek Chrzaszcz. Papuq: a coq assistant. In Proceed-
ings of PATE’07, pages 79–96, 2007.

[Sie08] Luis Sierra. Enseñando deducción natural con coq. In Proceedings of
CIESC 2008, XVI Congreso Iberoamericano de Educación Superior en
Computación, 2008.

[vD94] Dirk van Dalen. Logic and Structure. Springer-Verlag, 1994.


