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Abstract

In this paper we argue that sequent proofs systems are a better de-
ductive apparatus for introducing proofs to students than are natural
deduction systems. Natural deduction derivations of superintuitionistic
theorems (theorems of classical logic that are not intuitionistically valid)
require indirect and often obtuse constructions. Constructing derivations
in sequent systems is uniform, driven by syntax. The strong claim often
made for natural deduction is that derivations closely reflect the logical
thought process. We argue here that, for the superintuitionistic theorems,
classical sequent derivations also reflect a logical thought process which is
more concise and more direct than their natural deduction counterparts.

1 Introduction

In 1935 Gerhard Gentzen introduced natural deduction and sequent proof sys-
tems for both intuitionistic and classical logic [3]. Pedagogically, natural de-
duction has been preferred over sequent calculi. There are a large number of
introductory logic texts based on natural deduction [4, 6, 12] while there are
very few that use sequent systems. The recently published [10] is an exception
as is the author’s own [2] (unpublished).

We offer the following anecdote as motivation for this paper.
∗The work reported on here was partially supported by NSF grant CCR-9985239
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Some years ago, teaching computer science students natural deduction
proofs from a well known text, I assigned a number of exercises. One of
the problems was to give a natural deduction derivation for the following
theorem of classical logic: (φ ∧ ψ) ⇒ σ) ⇒ ((φ ⇒ σ) ∨ (ψ ⇒ σ)). At
the following lecture, students were very agitated. No one in the class had
managed to prove the formula and a number of students had convinced
themselves the theorem was not valid. I contacted the authors pointing out
that difficulties students have proving superintuitionistic theorems in the
natural deduction system do not arise when using a sequent system. One
of the authors replied, “We like it this way.”

One interpretation of the author’s reply is that, raising questions about
the validity of classical logic is one of the goals of using natural deduction; a
subversive teaching strategy indeed [8]. Questions about classical logic are good
ones, but is this the best way to teach beginning students classical logic itself?

1.1 Argument

Our argument for using a sequent calculus for introducing students to proof in
classical logic1 is based on two claims:

i.) The method of constructing sequent derivations is uniform.

ii.) For superintuitionistic theorems the explanations embedded in sequent
derivations are better than those contained in natural deduction deriva-
tions of the same theorem.

Uniform Derivations It is well known that sequent systems for classical
propositional logic2 provide a framework for uniform proof search [7, 11]. Find-
ing a sequent derivation is a syntax directed affair which proceeds by struc-
turally decomposing the formulas in the sequent to be proved; finding a natural
deduction proof can require significant ingenuity3 on the part of the student.

Explanatory Content A strong claim often made for natural deduction is
that derivations somehow reflect the process of logical reasoning; the way experts
think when constructing a proof. Gentzen himself claimed this for his intuition-
istic natural deduction system NJ. He wrote [3, pp.80]: “5.11 [An advantage of
NJ is] A close affinity to actual reasoning...”. Gentzen did not make the same
claim for his classical natural deduction system NK. We take this strong claim

1We have limited our discussion here to propositional logic but sequent systems work
equally well for introducing first order logic.

2Not all formulations of the sequent rules have this property, see e.g. [7, pp.16],shared
contexts (sometimes called multiplicative) provide for easy search.

3More than one proponent of natural deduction has commented that maybe propositional
logic shouldn’t be easy or that perhaps it isn’t, really. This too would seem to be a subversive
notion. It might be compared to the idea that because arithmetic using Roman numerals is
difficult, that perhaps arithmetic just is difficult.
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to be the reason proponents of natural deduction prefer it. Here, we argue that
sequent derivations, though easier to construct, encode similarly cogent proofs.

It is perhaps not inconceivable that the claimed correspondence between the
logical thought process and the resulting natural deduction derivation is only
available to the author of the derivation, and not the reader, though this seems
unlikely. If not, the structure of the derivation itself in some way records the
logical thought process and this content is available to authors and readers alike.
If so, natural deduction derivations somehow encode an account of the logical
reasoning process and it should be possible to reconstruct an informal proof
from the formal derivation that reflects this structure. Of course it is. This last
claim is also true for sequent derivations4

Our method of arguing that sequent derivations contain a similar record of
logical reasoning will be to compare the natural language proofs extracted from
derivations of the same theorem in both systems. We claim that the proofs
extracted from sequent derivations of superintuitionistic are more perspicuous
than those extracted from natural deduction derivations; of course the reader
must decide this for herself. Since we agree that for theorems of intuitionistic
logic, natural deduction derivations are natural, we will examine derivations of
superintuitionistic theorems.

2 Natural Deduction

Here, we use Prawitz[9] style tree structured derivations with explicit labels for
assumptions. Linear representations exist as well [6, 4]. The proof rules for
Natural Deduction are presented in Fig. 1. The fundamental idea of the natural
deduction systems is that each logical connective is represented by two rules:
one describing how the connective is to be introduced into a proof and the other
describing how a connective is eliminated or decomposed.

All of the rules5 except reductio ad absurdum (Raa) are intuitionistically
acceptable [9]. We can classify theorems by their proofs. Theorems having at
least one proof that does not use the rule (Raa) are intuitionistic. Theorems for
which the use of Raa is essential are superintuitionistic. There is no shortage
of such theorems. Note that the rule Raa includes a negation in the premises
of the rule while no explicit negation appears in the conclusion, this gives it
the nature of an elimination rule. But, since superintuitionistic theorems (even
ones containing no occurrence of the negation (¬) symbol) require the use of
this rule, derivations of such theorems require the introduction of a negated
formula. This is one sense in which the resulting proofs are unnatural. Classical
natural deduction does not have the subformula property6 [5].

4In [2] an recursive algorithm for translating sequent proofs into natural language is pre-
sented. A similar algorithm for natural deduction proofs could similarly be designed.

5Prawitz used reductio ad absurdum (Raa) as his classical rule. Gentzen [3] extend his
intuitionistic system NJ to classical logic by adding excluded middle (which we prove below
using Raa). Adding a rule for double negation elimination will do as well.

6The subformula property (which does hold for cut-free derivations in the sequent calculus)
says that all formulas occurring in a derivation are subformulas of the goal. Also, formulations
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φ ∨ ψ ∨i1
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ψ

φ⇒ ψ
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[φ]
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⊥
¬φ

¬i

φ ∧ ψ
φ

∧e1
φ ∧ ψ
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k
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σ
∨e
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ψ
⇒e

φ ¬φ
⊥ ¬e

⊥
φ
⊥ej

[¬φ]
...
⊥
φ

Raa

Figure 1: Natural Deduction Proof Rules

3 Sequent Calculus

A sequent is a pair of collections (possibly empty) of formulas (separated here
the symbol `) Γ ` ∆. The collection Γ is called the antecedent and ∆ is the
succedent. A sequent characterizes the state of a derivation. The formulas in
the antecedent (on the left side of `), are the open assumptions. The right
formulas, in the succedent, are the open goals, any one of which may be shown.
By a denotational interpretation [7, pp.47] of multisuccedent sequents, Γ ` ∆ is
valid if the conjunction of the formulas in the antecedent implies the disjunction
of the formulas in the succedent.

The sequent calculus proof rules are shown in Fig. 2. In this formulation of
the sequent rules, Γ and ∆ are sequences (lists) of formulas7. In the sequent
calculus, there are two rules for each connective, one that shows, based on
the principle connective, how to decompose an open assumption and another
showing how to decompose a connective occurring in a open goal. There are
two axiom rules.

Note that there is no equivalent of Raa in the sequent rules, though it is
derivable. We start the derivation with the assumption8 ¬φ ⇒ ⊥ and show φ.

of natural deduction based on excluded middle or double negation elimination also do not enjoy
the subformula property.

7We have found that for beginning students, lists are more concrete than sets or multisets:
the list specification allows us to easily specify that the formula operated upon is dropped
from the antecendent or succedent above.

8Proponents sometimes claim that an advantage of natural deduction is that it allows
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Axioms

Γ1, φ,Γ2 ` ∆1, φ,∆
(Ax)

Γ1,⊥,Γ2 ` ∆
(⊥Ax)

Left Rules Right Rules

Γ1, φ, ψ,Γ2 ` ∆

Γ1, (φ ∧ ψ),Γ2 ` ∆
(∧L)

Γ ` ∆1, φ,∆2 Γ ` ∆1, ψ,∆2

Γ ` ∆1, (φ ∧ ψ),∆2
(∧R)

Γ1, φ,Γ2 ` ∆ Γ1, ψ,Γ2 ` ∆

Γ1, (φ ∨ ψ),Γ2 ` ∆
(∨L)

Γ ` ∆1, φ, ψ,∆2

Γ,` ∆1, (φ ∨ ψ),∆2
(∨R)

Γ1,Γ2 ` φ,∆ Γ1, ψ,Γ2 ` ∆

Γ1, (φ⇒ ψ),Γ2 ` ∆
(⇒L)

Γ, φ ` ∆1, ψ,∆2

Γ ` ∆1, (φ⇒ ψ),∆2
(⇒R)

Γ1,Γ2 ` φ,∆
Γ1,¬φ,Γ2 ` ∆

(¬L)
Γ, φ ` ∆1,∆2

Γ ` ∆1,¬φ,∆2
(¬R)

Figure 2: Sequent Proof Rules

Ax
φ ` φ

¬R` ¬φ, φ ⊥Ax⊥ ` φ
⇒L¬φ⇒ ⊥ ` φ

Figure 3: Sequent derivation of Raa

A natural language translation of the sequent derivation follows:

Since we have assumed (¬φ⇒⊥), if we show that ¬φ or φ holds, we
may assume ⊥ to show φ. To see that ¬φ holds, we assume φ. We are left
to show that φ holds but we have assumed it so this case is trivial. Having
discharged ¬φ, we are free to assume ⊥ and must show φ, but this is trivial
because we have assumed false. Q.E.D.

This derivation illustrates how the sequent calculus rules account for classical
reasoning. More than one formula may appear in the succedent of a sequent
and any one of the formulas there may be operated on by a right rule. This
happens in the left branch of the derivation in Fig. 3 after the application of the
⇒ L rule. For classical logic the disjunction property9 does not hold. Critics
of sequent calculus sometimes complain that having more than one goal in the
succedent is problematic but, in a rather precise way, this is what it means to be
superintuitionistic i.e more than one formula is required in the succedent10 to

for reasoning from assumptions. In the sequent system, assumptions may be added to the
antecedent of the initial goal.

9The disjunction property is, if Γ ` φ ∨ ψ is provable, then Γ ` φ is provable or Γ ` ψ is
provable.

10The intuitionistic sequent calculus is obtained from the rules in Fig. 2 by restricting the
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complete the proof. The ∨R rule justifies multiple goals perfectly well: to prove
φ∨ψ, it is enough to prove either φ or ψ. The power of classical sequent calculus
comes from changing the focus from one formula on the right to another. In
the proof given above of Raa, the application of the ¬R rule is focused on the
formula ¬φ, in the next step it turns out that φ is the formula proved. It is
impossible to say which of φ or ¬φ has been proved because neither has. This
is the nature of sequent derivations of superintuitionistic theorems.

4 Comparative Analysis

In this section we compare the two systems by considering both natural deduc-
tion derivations and sequent derivations of the following two formulas.

[XM ] φ ∨ ¬φ [GDM ] (φ ∧ ψ) ⇒ σ) ⇒ ((φ⇒ σ) ∨ (ψ ⇒ σ))

These formulas are superintuitionistic tautologies of classical logic. The for-
mula XM is the law of excluded middle. The formula GDM is the one students
struggled so with in the motivating anecdote. It is a generalization of one di-
rection of De Morgan’s law for pushing a negation down over a conjunction
¬(φ ∧ ψ) ⇒ (¬φ ∨ ¬ψ). To see this, consider the case where σ is ⊥ and note
that (φ⇒ ⊥) ⇔ ¬φ. Readers may suspect that we have carefully chosen these
examples to support out point, not so, any number of other important superin-
tuitionistic theorems for this analysis.

Law of Excluded Middle A natural deduction derivation and a sequent
derivation of excluded middle are shown in Fig. 4.

6 2
[φ]

∨i1
φ ∨ ¬φ

6 1
[¬(φ ∨ ¬φ)]

¬e
⊥

[2] ¬i¬φ
∨i2

φ ∨ ¬φ
6 1

[¬(φ ∨ ¬φ)]
¬e

⊥
[1] Raaφ ∨ ¬φ

Ax
φ ` φ ¬r
` φ,¬φ

∨r` φ ∨ ¬φ

Figure 4: Natural Deduction and Sequent derivations ofXM

Perhaps the first thing to note about these derivations is how complex the
natural deduction derivation is in relation to the sequent derivation; there are
more symbols (it takes more ink), it takes more space on the page and the shape
of the natural deduction derivation is more complex than the sequent derivation
of the same formula. Also note that at every step of the sequent derivation, the
rule to apply is determined by the syntax of the formulas in the sequent. In
general, if more than one rule applies, it does not matter which one is applied

succedent to contain at most one formula.
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though delaying the application of rules that have two hypotheses often, though
not always,results in a shorter derivation.

The proof given by the natural deduction derivation shown in Fig. 4 might
be translated into English as follows:

To prove XM , assume ¬XM and try to derive a contradiction which
(using Raa) will yield XM . The only rule having ⊥ as it’s conclusion is
¬E and so we must find a proof of XM a to pair with the assumption¬XM.
If φ is assumed b we know φ∨¬φ (XM) also holds. This together with the
assumption ¬XM gives a contradiction, yielding ⊥.c We apply ¬I to ⊥
to discharge the assumption φ yielding ¬φ. Now, by an argument similar
to the one we just gave, since we know ¬φ we also know φ ∨ ¬φ (XM)
againd and again, together with a second copy of the assumption ¬XM
yields ⊥. An application of Raa discharges the two copies of assumption
¬XM. Q.E.D.

aThis seems circular, we started by trying to prove XM and in trying to do so have
introduced a subgoal of proving XM .

bAt this point we hope to be able to discharge it later but do not yet know how.
cOriginally, we thought we would use ⊥ to discharge the assumption ¬XM but at

this point there are two undischarged assumptions. Which one to discharge is not clear.
dAt this point it appears that the derivation is complete, but the assumption ¬XM

still has not been discharged.

Now consider the proof based on the sequent derivation.

To prove φ∨¬φ, by ∨R it is enough to prove one of the goals φ or ¬φ. To
prove ¬φ, assume φ. But now φ is trivially proved since we just assumed
it. Q.E.D.

The reader must decide for herself if the sequent derivation or the account of
the sequent derivation is less satisfactory than the natural deduction derivation
or its informal proof.

Generalized DeMorgan’s Law Next we consider GDM.

6 3
[φ]

6 4
[ψ]

∧i
φ ∧ ψ

6 1
[(φ ∧ ψ) ⇒ σ ]

⇒eσ
[3] ⇒ iφ⇒ σ

∨i1
(φ⇒ σ) ∨ (ψ ⇒ σ)

62
[¬((φ⇒ σ) ∨ (ψ ⇒ σ))]

¬e
⊥ ⊥eσ

[4] ⇒ iψ ⇒ σ
∨i2

(φ⇒ σ) ∨ (ψ ⇒ σ)
62

[¬((φ⇒ σ) ∨ (ψ ⇒ σ))]
¬e

⊥
[2] Raa

(φ⇒ σ) ∨ (ψ ⇒ σ)
[1] ⇒ i

((φ ∧ ψ) ⇒ σ) ⇒ (φ⇒ σ) ∨ (ψ ⇒ σ)

Figure 5: Natural Deduction derivation of GDM
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A natural deduction derivation of GDM is shown in Fig. 5. An informal
account of the argument in the derivation is given as follows:

To prove GDM assume the antecedent ((φ ∧ ψ) ⇒ σ) and then to show
the consequent ((φ ⇒ σ) ∨ (ψ ⇒ σ)) (call this formula C.)a. We assume
¬C and derive a contradictionb. To see how, assume φ and assume ψ to
get φ ∧ ψ. We use this formula to eliminate the implication in the first
assumption (φ ∧ ψ) ⇒ σ, this yields σ. We discharge the assumption φ
by introducing the implication φ ⇒ σ. We use ∨i to get C again. An
application of ¬E gives ⊥c Use ⊥E to get σ again and now introduce the
implication ψ ⇒ σ discharging the assumption ψ. Another application of
∨I yields C again. With another copy of the assumption ¬C we derive
⊥. We apply Raa, discharging the assumption ¬C to get C. Implication
introduction discharges the first assumption and completes the proof.

aAt this point, one might try to prove C directly which can not be done from the
assumption.

bWe have encountered a seeming circularity again, we started trying to prove C and
now, as a subgoal of the strategy for using Raa must prove C. The experienced prover
pushes on.

cThe assumption ψ and ¬C are still open so we go around again.

Consider the sequent derivation of GDM shown in Fig. 6

Ax
φ, ψ ` φ, σ Ax

φ, ψ ` ψ, σ
∧r

φ, ψ ` φ ∧ ψ, σ ⇒r
φ ` φ ∧ ψ,ψ ⇒ σ

Ax
σ, φ ` σ, ψ ⇒ σ

⇒ l
(φ ∧ ψ) ⇒ σ, φ ` σ, σ ⇒ ψ

⇒r
(φ ∧ ψ) ⇒ σ ` φ⇒ σ, ψ ⇒ σ

∨r
(φ ∧ ψ) ⇒ σ ` (φ⇒ σ) ∨ (ψ ⇒ σ)

⇒r
` ((φ ∧ ψ) ⇒ σ) ⇒ ((φ⇒ σ) ∨ (ψ ⇒ σ))

Figure 6: Sequent derivation of GDM

An account of this proof is as follows:

To prove GDM assume the antecedent ((φ ∧ ψ) ⇒ σ) and show ((φ ⇒
σ) ∨ (ψ ⇒ σ)). Since the goal is a disjunction, it is enough to show one of
(φ ⇒ σ) or (ψ ⇒ σ)). To show φ ⇒ σ, assume φ and show one of σ or
(ψ ⇒ σ)). Since we have assumed ((φ ∧ ψ) ⇒ σ), if we show (φ ∧ ψ) we
can assume σ to show σ or (φ⇒ σ), but this is trivial. To see that (φ∧ψ)
holds: assume ψ and show that one of φ∧ψ or ψ holds. To show φ∧ψ we
must show φ and we must show ψ. But we have previously assumed both of
these formulas so the proofs are trivial. Q.E.D.

Remarks on the Derivations and the Proofs For superintuitionistic the-
orems, natural deduction derivations must take a circuitous path; deriving a
contradiction from a negated assumption. The goal of deriving a contradic-
tion often leads to the introduction of more assumptions which must in turn
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themselves be discharged. Natural deduction derivations require a sophisticated
combination of forward and backward reasoning.

Sequent derivations are constructed strictly by working backwards and are
driven by the syntactic structure of the formulas in the sequent. Natural lan-
guage proofs extracted from sequent derivations are more direct and are at least
as readable, if not more so, than their natural language counterparts.

5 Other objections to Sequent Calculus

Aside from the claims made for natural deduction, there are other objections
made against sequent proof systems which we only briefly address here.

Sequent derivations require more writing. A prominent complaint is that
sequent derivations require more writing. It certainly is that case that there
is more copying of formulas in sequent derivations than in natural deduction
derivations. This is evident by examining the rules. It not the case that sequent
derivations always require more ink or more paper. In fact, in both of the
examples presented here, the sequent derivations require fewer symbols and
take less paper. It seems that the advantages of the sequent systems outweighs
this complaint.

Natural deduction rules are more natural. The claim is sometimes made
that the form of the natural deduction rules introduction and elimination rules
is somehow more intuitive than the left and right rules of the sequent calculus.
It is well known [7, pp.14-15] that elimination rules correspond to left rules and
introduction rules correspond to right rules. Justification for the ∨R rule seems
to be critical.

Tableaux systems are better than sequents. Tableaux systems are quite
similar to sequent calculi and do require less copying of formulas. Tableaux
provide a calculational mechanism (like sequent calculi and truth tables) for
determining validity but an (unjustified) claim is that their explanatory content
is not as direct as that provided by a sequent derivation.

6 Conclusions

Failure to find a natural deduction proof has led more than one student to
reject the classically valid theorems as absurd. On the one hand, this reaction
can be dismissed as obviously flawed and unreasonable11; though reasonable
people share these views. The sequent calculus has the advantage that finding
a derivation is a mechanical process. We have also claimed that the arguments
embedded in them are, in the superintuitionistic case better than the rather
convoluted reasoning behind corresponding natural deduction derivations.

11This dismissal is what Anderson and Belknap [1, pp.4] call The official view i.e. that the
misunderstanding is naive and can be cleared up by a truth table.

9



Thanks The author thanks Roy Dyckhoff and John Cowles for discussions
about this paper and the generalized De Morgan formula used as a motivating
example here. Thanks to Franz-Peter Greismayer and Stuart Allen (where ever
he is) for discussion of natural deduction proofs of GDM . Also, thanks go to
the anonymous referees who’s comments resulted in significant restructuring of
the original version of this paper.

References

[1] Alan Ross Anderson and Nuel D. Belnap Jr. Entailment: The Logic of Rel-
evance and Necessity, Vol. I. Princeton University Press, 1975. 542+xxxii.

[2] James Caldwell. Logic and Discrete Mathematics for Computer Scientists.
2010. 178+x pages, Unpublished manuscript.

[3] Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, edi-
tor, The collected papers of Gerhard Gentzen, pages 68–131. North-Holland,
1969.

[4] Michael R. A. Huth and Mark D. Ryan. Logic in Computer Science: Mod-
elling and reasoning about systems. Cambridge University Press, 2nd edi-
tion, 2004. 387+xvii.

[5] Hughes Leblanc. Two shortcomings of natural deduction. In Existence,
Truth and Provability. SUNY Press, Albany, NY, 1982. Originally pub-
lished in The Journal of Philosophy 68:29–37, 1966.

[6] E. J. Lemmon. Beginning Logic. Hackett, 1978.

[7] Sara Negri and Jan von Plato. Structural Proof Theory. Cambridge Uni-
versity Press, 2001. 257+xvii.

[8] Neil Postman and Charles Weingartner. Teaching as a Subversive Activity.
Delta, 1971. 240+xv.

[9] Dag Prawitz. Natural Deduction: A proof-theoretical study. Dover, 2006.
113 + vii, first published 1965.

[10] Theodore Sider. Logic for Philosophy. Oxford University Press, 2010.
304+xiv.

[11] A. S. Troelstra and H. Schwictenberg. Basic Proof Theory: Second Edition.
Cambridge University Press, 2000. 417+xii.

[12] Dirk van Dalen. Logic and Structure. Springer Verlag, 3rd edition, 1994.
215+vii.

10


