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Abstract

1 Polynomials as proof devices

Algebraic proof systems based on formal polynomials over algebraically closed
fields (the “polynomial ring calculus”) were introduced in [9] (see [10] and [11] for
recent developments). Formal polynomials work as a powerful tool for logical
derivation in classical and non-classical logics, in particular for propositional
many-valued logics, paraconsistent logics and modal logics. Although the case
of first-order logic (FOL) is still work in progress, polynomial ring calculus
have been obtained for the monadic fragment of FOL and offer a nice view of
syllogistic logic that permits to reassess ideas of G. Boole on the unity between
algebra and logic.

For the particular case of classical propositional calculus (PC) a direct for-
mulation of propositional derivability can be obtained by translating the usual
Boolean connectives as follows: Let At = {p1, p2, . . .} be the atomic sentences
of PC, and ¬,∨,∧,→ the usual connectives. The translation is part of the logic
folklore, and perhaps because it is so intuitive its generalization towards other
logics has never been explored in full generality.

The polynomial rules over Z2[X] for the case of PC are just x + x `≈ 0
and x · x `≈ x. Based on such rules and on the elementary algebraic and
combinatorial properties of the ring Z2[X] it can be easily shown that ϕ is a PC-
tautology iff Π(ϕ) `≈ 1, or, in other words, ϕ is a PC-tautology iff such reduction
rules end up at the element 1. For instance, the sentence α→ (¬α), supposing
α atomic, is translated by Π above into x · (x + 1) + x + 1. The reduction rules
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and polynomial handling obtains the following sequence of reductions (where
a ≈ b mean that a is reduced t b): (x · (x + 1) + x + 1) ≈ (x2 + x + x + 1) ≈
(x + x + x + 1) ≈ (x + 1) which shows only that it is equivalent to ¬α, but not
any tautology.

This result represents, at the same time, a (constructive) semantical com-
pleteness and a decision procedure for PC. A generalization of this idea to
many-valued logics, considering that a completeness result with respect to the
polynomial ring calculus can be obtained for any finitely-valued logic by using
appropriate finite fields, offers some promising possibilities for a method for
checking the general satisfiability problem for many-valued logics (in particular
for SAT), since the reductions performed by the polynomial ring calculus might
(at least in some fortuitous cases) be subexponential in the number of variables
of a propositional formula.

By using rings over finite fields (a generalization of Boolean rings, rather than
Boolean algebras)any finite-valued logic can be treated in similar terms. Taking
Lukasiewicz’s three-valued system L3 as an example, recall that L3 is sound and
complete with respect to a couple of matrices for→ and ¬ (where 2,1,0 are used
instead of the more common 1, 1/2 and 0, and 0 is the only designated truth-
value). In polynomial form over the ring Z3[X] the corresponding connectives
are expressed by: x→ y = 2x(y+1)(xy+y+1) and ¬(x) = 2x. As an example,
x→ x = 2x(x+1)(x2+x+1) = 2x4+4x3+4x2+2x. Using the polynomial rules
3 · x ≈ 0 and x3 ≈ x, we obtain immediately: x→ x ≈ 2x4 + 4x3 + 4x2 + 2x ≈
2x2 + x + x2 + 2x ≈ 3x2 + 3x ≈ 0. Hence, α → α is a theorem in L3. The
method is obviously also useful as a decision procedure (it is clear that any logic
characterizable by polynomial calculus is recursively decidable).

An interesting characteristic of using formal polynomials is that the method
can be also used in non-truth functional logics (as modal and paraconsistent
logics) by using extra (hidden) variables. A new sound and complete polynomial
ring calculus for S5, which we called the least hidden-variables calculus, was
obtained in [1]; as an example:

Example 1.1. |≈S5 (♦p→ p) ∨ (♦p→ �♦p):

((♦p→ p) ∨ (♦p→ �♦p))∗ (1)
= (♦p→ p)∗(♦p→ �♦p)∗ + (♦p→ p)∗ + (♦p→ �♦p)∗ (2)
≈ (♦p→ �♦p)∗((♦p→ p)∗ + 1) + (♦p→ p)∗ (3)
≈ ((♦p)∗((�♦p)∗ + 1) + 1)((♦p)∗(p∗ + 1)) + (♦p)∗(p∗ + 1) + 1 (4)
≈ ((x�¬p + 1)(x�¬�¬p + 1) + 1)((x�¬p + 1)(xp + 1)) + (x�¬p + 1)(xp + 1) + 1

(5)

≈ ((x�¬p + 1)(x�¬p) + 1)((x�¬p + 1)(xp + 1)) + (x�¬p + 1)(xp + 1) + 1 (6)
≈ (x�¬p + 1)(xp + 1) + (x�¬p + 1)(xp + 1) + 1 (7)
≈ 1. (8)

In [1] we show a keen relationship between the polynomial ring calculus
and modal algebras, as well as with equational logics and ‘rewriting rules’ (the
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Dijkstra-Scholten method). We also show how the methods can be extended to
other modal logics.

2 Some historical connections

Formal polynomials as algebraic proof procedures are reminiscent of the tradi-
tion of using algebraic methods to express logic properties, already implicit in
the work of Leibniz, Boole, De Morgan, Peirce, Schröder, Hilbert and Tarski.

The Russian mathematician Ivan Ivanovich Zhegalkin had already proposed
in 1927, however, a method (cf. [19]) to translate and decide propositions from
A. Whitehead and B. Russell’s Principia Mathematica by using polynomials
with coefficients in the two-element field Z2.

Zhegalkin was concerned with sums and products of propositions, as well
as with arithmetical side of symbolic logic (cf. [20]), and thought also about
extending his methods to quantified sentences, borrowing the Peirce-Schröder
definition of universal quantification and existential quantification in terms of
infinite sums and products, although he did not obtain a complete method;
some intuitions in the same direction are also to be found in the work of the
Russian/Ukrainian logician Platon Sergeevich Poretskij (cf. [3]).

In the proposal of [9], [10] and [11] sentences are identified as multivariable
polynomials in the ring GFpn [X] of polynomials with coefficients in the Galois
field of order pn, and propositional derivability is reduced to checking whether or
not certain families of polynomials have zeros (reading truth-values as elements
of the field). Formal definitions and further details can be found [10] and [11].

3 Polynomials as automatic proof systems

Polynomial ring calculus seem to be very appropriate for automatic proof sys-
tems, not only for finitely many-valued logics but also for non-truth-functional
logics, including modal logics (cf. [1]): even logics that have no finite-valued
characteristic semantics, as the paraconsistent logics, can be given a two-valued
dyadic semantics expressed by multivariable polynomials over the ring Z2[X].

The system MUltlog, within a project by the Vienna Group for Multiple-
valued Logics, is an automatic system 1 which accepts as input the specification
of a finitely-valued first-order logic and outputs a sequent calculus (as well as
a natural deduction system and clause-formation rules) for this logic. MUltlog
automatically transforms tables of an arbitrary finite-valued logic into a finite
number of sequent rules, and it seems that a simple adaptation of MUltlog
would automatically obtain polynomial ring calculus for arbitrary finite-valued
logics. Interestingly enough, basic references for the MUltlog system (among
others) are [7] and [8], which define, respectively, tableau systems and hyperse-
quent systems that can be, for sure, transformed into polynomial format. This

1I am indebted to Josep Font (Barcelona) who called my attention to MUltlog, cf. http:

//www.logic.at/multlog/JMUltlog/, in a personal conversation in Dresden.
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fact carries further evidence that MUltlog could automatically transform tables
of an arbitrary finite-valued logic into polynomials over an appropriate finite
field, thus automatically generating polynomial proof systems for finite-valued
logics.

4 The algebraic side

Since polynomials represent the semantical setting for several logics already
in purely algebraic form, the use of formal polynomials in logic may be an
alternative to algebraic methods which basically correspond theorems on logical
systems with identities on classes, characteristic of the spirit of the Polish school
represented by A. Tarski, J. Lukasiewicz and A. Lindenbaum. In this way, using
polynomials my be a useful tool for teaching, or at least for elucidating, certain
metalogical properties of logic

The paradigmatic (and intuitive) cases are Boolean algebras (associated to
classical propositional logic) and Heyting algebras (associated to Intuitionis-
tic Logic). But to algebraize modal logics is harder, and the algebraization of
paraconsistent logics offers a real challenge (see [5] for a discussion, and for a
proposal, further refined in [6]). Considering that even some logics that have
no finite-valued characterizable semantics, such as certain modal and paracon-
sistent logics, can be characterized by polynomial ring calculi over polynomial
rings with extra variables (cf. [1] and [11]), a shift from Boolean algebras (or
Boolean lattices) to polynomial rings may be a clue to some new algebraic char-
acterizations.

For instance, the prime numbers of Z correspond to monic irreducible poly-
nomials in the ring of polynomials in one variable over finite fields, a property
with several interesting consequences (see [15]) that has never been explored
in logic. Moreover, factorizing polynomials seems to be more tractable than
factorizing integers, a fact that may have striking consequences in several areas.

Despite the fact that the categories of Boolean rings and Boolean algebras
are equivalent, polynomial rings based upon finite fields have some finer com-
binatorial properties that may be of more interest for logicians, and working
with commutative rings in general may offer some hints towards algebraizing
non-classical logics.

5 Polynomials as heuristic devices

Non-truth-functional connectives, however, are abundant in the literature. Béziau
in [4] defined a partial (non-truth-functional) negation ¬1 characterized by:

v(¬1P ) = 0 if v(P ) = 1

Albeit its non-truth-functional character, the negation ¬1 is defined via a process
of bounded non-determinism in the sense that v(¬1P ) ∈ {0, 1} if v(P ) = 0,
i.e., there are no truth-value gaps. As remarked, every finite-valued defined
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by a bounded non-deterministic definition can be represented by polynomial
functions over Galois fields GFpn [X] with extra (hidden) variables (cf. [10]).

Due to its bounded non-truth functionality, ¬1P can is representable as a
simple polynomial over Z2[X] with an extra variable x. Indeed, the “half ”
negation ¬1P is computable by x · (p + 1) and easily recovers classical negation
with the help of →: in polynomial format, P → ¬1P is computed as p · (x · (p+
1)) + p + 1 = p + 1, but p + 1 represents ∼.

This was noted in [4] with the suggestion that it could be regarded as a
certain “translation paradox” in the sense that PC can be strongly translated
within a certain subclassical logic K/2 (in the language {→,¬1}). The transla-
tion τ in question is:

1. τ(P ) = P , for P atomic;

2. τ(A→ B) = τ(A)→ τ(B);

3. τ(∼ A) = A→ ¬1A

Although this “phenomenon” deserved a paper by L. Humberstone (cf. [17]),
our polynomial computation shows that this is nothing more than a mere con-
sequence of function compositionality: ∼ belongs to the clone defined by →
and ¬1. Indeed, additional “half-logics” can be defined just by playing with
polynomials, as for instance:

v(¬2P ) = 1 if v(P ) = 0

In polynomial terms ¬2p is expressed by p · x + 1 (when p = 0, ¬2p = 1, but
when p = 1, then ¬2p is undetermined)

Now consider a connective P
∗← Q semantically defined in the polynomial

form as p · (q + 1); this expresses semantically the connective:

v(P ← Q) = 1 iff v(P ) = 1 and v(Q) = 0

It is easy to see that ¬2 and ← define classical negation ∼ by ¬2(P ) ∗← P ,
computed as (p · x + 1) · (p + 1) = (p + 1) · p · x + (p + 1) = p + 1.

Not only new half-logics, but also quarter-logics can be invented. Consider a
binary connective semantically defined in p and q by x · (p+1) ·q, corresponding
to a non-truth-functional connective ⇀ whose valuation condition is:

v(P ⇀ Q) = 0 if v(P ) = 1 or v(Q) = 0

Consider a logic K/4 in the signature {→,⇀}.
This quarter logic recovers itself; indeed, classical negation ∼ can be defined

by:
P → (P ⇀ Q)

In polynomial format this is computed as p · (x · (p + 1) · q) + p + 1 = p + 1,
hence full PC is recovered in the signature {→,⇀,∼}.
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More quarter-logics can be defined, now departing from x · p · (q + 1), corre-
sponding to ⇁ whose clause for valuation is:

v(P ⇁ Q) = 0 if v(P ) = 0 or v(Q) = 1

Consider now K ′/4 in the signature {→,⇁}); classical negation ∼ is now
definable by:

Q→ (P ⇁ Q)

and again full PC is recovered in {→,⇁,∼}.
Several of such “partial logics” can be discovered (cf. [13]), making polyno-

mial handling a nice heuristic device. The polynomial ring calculi have obvious
potentialities for automation, constitute one of the few devices for exploring
the heuristic side of logic and are skillful engines to help understanding and
explaining certain features of logic and metalogic. As argued in [2], the view
that a mathematical proof reduces to just the guarantee of truth of a theorem
fails to explain why new proofs of certain theorems are considered relevant.
Methods such as our polynomial calculi may help to render proofs in logic more
intelligible, and this is of course of paramount importance for teaching.
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